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Forced plumes 

By B. R. MORTON 
Department of Mathematics, University of Manchester 

(Received 1 May 1968) 

This paper describes an investigation of the turbulent forced plumes generated by 
steady release of mass, momentum and buoyancy from a source situated in an 
extensive region of uniform or stably stratified fluid. The treatment, which is an 
extension of earlier work on buoyant plumes, also brings out the relationship 
between the j e t  and the plume as special cases of forced plumes. 

The analysis shows that the behaviour of a forced plume from a source of finite 
size which delivers buoyancy, mass and momentum can in a uniform environment 
be related to that from a virtual point source of buoyancy and momentum only, 
and a treatment is given for the latter type of forced plume. When the environ- 
ment is weakly stratified it is inferred that forced plumes can be related to point 
sources in the same way. In  a uniform environment the plume fluid rises in- 
definitely; but when the environment is stably stratified, increasing the release 
of mass and momentum from a given source of buoyancy has the effect at  first of 
reducing the total height of the plume, and only for very large flux of momentum 
does the height increase again, without limit. A description is given for the 
behaviour of vertical jets in a stably stratified environment, and for forced 
plumes of fluid with negative buoyancy. 

Introduction 
The plumes generated from steady sources of buoyancy in a uniform or 

stratified environment have been described by several authors. Laminar thermal 
plumes in a uniform environment were analysed by Gutman (1949) and Yih 
(1951, 1952), and Yih has also shown experimentally that such laminar flow is 
unstable quite close to the source (in terms of a local Rayleigh number) for all but 
the weakest sources. Thus the flow in most plumes will be effectively turbulent 
throughout the ascent, and this treatment will be restricted to turbulent flow. 

Turbulent plumes in a uniform environment were first investigated by Schmidt 
(1941) using mixture length theories, and related experiments have been reported 
since by Yih (1951), Rouse, Yih & Humphreys (1952) and Railston (1954). In 
these experiments the nearest approximation to a pure source of buoyancy was 
Schmidt’s electrically heated grid set in a circular hole in a table-top; Railston 
used a similar sourcenear the bottom of a vertical chimney, so that he was actually 
considering constrained plumes in an induced current; and Rouse et al. (1952) 
carried out a careful set of experiments on free plumes above gas flames. Two 
treatments have been given for turbulent plumes in an ambient fluid in which the 
density varies linearly with height: Priestley & Ball (1955) were concerned 
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specially with plumes rising from heated surfaces, while Morton, Taylor & Turner 
(1956) investigated the plumes from a virtual source of buoyancy only, and 
related these to experiments in which a steady stream of light fluid issued from 
a nozzle. 

The purpose of this paper is to find the general effect of variations in the 
character of the source on the buoyant plumes which are produced. The plume 
generated from a source of finite size which delivers a flux of buoyancy, momentum 
and mass will be termed a forced plume. It will be shown that there is always an 
equivalent point (or virtual) source of buoyancy and momentum only which 
produces the same flow as the extended source, and the plumes from such point 
sources will also be called forced plumes. It may be noted that there can be no 
mass flow from a point source when the momentum flow is finite; for the momen- 
tum flow is of order (plumeradius)2 x (plume velocity)2, so that the plume velocity 
near such a point source is O[(plume radius)-11, and the mass flow is of order 
(plume radius)2 x (plume velocity) which tends to zero at the source. The forcing 
considered here is from the source and not from the environment, which is 
assumed to be at rest except for the influence of the plume, Two limiting cases of 
the forced plume are thejet from a point source of momentum, and the pureplume 
from a source of buoyancy only. 

In  order that the problem will be mathematically tractable, certain assump- 
tions must be made about the nature of the turbulent flow and its effect on fluid 
mixture across the mean boundaries of the plume. First, it will be assumed that 
well-developed turbulent flow in forced plumes is independent of viscosity (i.e. 
that local values of a Reynolds number are large), and of thermal conductivity 
(so that behaviour does not depend on the Prandtl number). Then, with the 
assumption of similarity of profiles at different cross-sections of the plume, it 
follows that the structure of turbulence within the plume and the rate of entrain- 
ment at its mean edge can depend only on the differences in mean density and 
mean vertical velocity between the plume axis and the ambient fluid. The treat- 
ment will be restricted to vertical plumes to eliminate the dependence on 
Richardson number of turbulent mixing of fluids with different densities across 
a horizontal interface. And finally it will be assumed that local density variations 
are everywhere so small in relation to some reference density that the inertia of 
unit volume of the fluid can be regarded as uniform. This eliminates the effect of 
density differences on mixing which may be important when large differences in 
temperature are maintained between the plume and ambient fluid (e.g. in tur- 
bulent flames), and is unlikely to introduce serious error for normal plumes, since 
any large density differences near the source are rapidly reduced as the fluid rises. 
It is then reasonable to assume that turbulence of similar character will be found 
in all forced plumes of the kind considered. 

The general behaviour of forced plumes will be investigated now by an 
extension of the methods used by Morton et al. (1956) (hereafter referred to as 
paper I). As in their treatment, the analysis will refer to incompressible fluids, 
although it can be extended to include convection in the atmosphere by sub- 
stituting potential temperatures and densities for ordinary temperatures and 
densities. 
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The model for forced plumes 
The model used is very similar to that of paper I, being based on the assump- 
tions: (i) that the ratio of the mean speed of inflow at the edge of a forced plume 
to the mean vertical speed on the plume axis is a constant, a, and (ii) that profiles 
of mean vertical velocity and buoyancy are each of similar form at, all heights. 

A feature of forced plumes which was ignored in paper I is the greater lateral 
spread of heat than of vertical momentum. Rouse et air. (1952) have illustrated 
this by experiments with buoyant plumes above isolated gas flames. They plotted 
their results in non-dimensional form, and chose the Gaussian profile 

exp ( - 96R2/X2) 

as giving the best fit for a wide range of velocity measurements, and 

exp ( - 7 1R2/X2) 

for the measurements of temperature excess; X is the height above the source 
and R the radial distance from the plume axis. 

The entrainment constant a is clearly associated with the velocity profile 
rather than the temperature profile, and where the transport of material pro- 
perties by the plume is of principal importance the temperature profile plays a 
secondary role even when buoyancy forces give rise to the flow. Thus it will be 
appropriate to seek a similarity solution for which a measures the rate of flow 
into a forced plume, with velocity profile characterized by the horizontal length- 
scale b, and with an associated buoyancy profile of the same shape but with a 
length-scale hb. h and a are universal constants for forced plumes in which local 
density variations are small; they must be evaluated experimentally. 

Forced plumes in a uniform environment 
Consider an axially symmetrical plume generated from a roughly circular 

horizontal source in an incompressible environment. The plume will be assumed 
to have Gaussian profiles of mean vertical velocity u ( X ,  R )  = U ( X )  exp ( - R2/b2) 
and mean buoyancy g(pe - p )  ( X ,  R) = p o P ( X )  exp ( - R2/h2b2), with characteristic 
length-scales b ( X )  and h b ( X ) ;  p , (X)  is the density in the environment and 
po = pe( 0) is the reference density. The equations representing conservation of 
mws, momentum and density deficiency (analogous to equations (6) of paper I) 
are, for a uniform environment, approximately 

I d 
a ( b 2 U )  = 2abU, 

d - (b2U2) = 2h%2P, 

J d 
-(A2b2UP) = 0. ax 

Under the transformations V = 2-*bU, W = b2 U and F = h2b2UP/( 1 + h2), these 

dF 
= 0. 

dW d 8 4  

ax d X  

reduce to 
__ = 2hxV, ~ = ( l+h2)PW,  
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n-pV2 is the momentum flux, n-p W the mass flux and n-poF the buoyancy flux 
across a plane at position X in the forced plume. 

The strength of a source will be defined by specifying the rates of discharge of 
buoyancy (n-poFo), momentum (npV;) and mass (npW,), and will be labelled 

The forced plume from a source (Fo, V,, 0)  

It will be convenient to find the effect of discharge of momentum from a virtual 
point source of buoyancy before dealing with real sources of finite size. If there is 
a finite flux of buoyancy cc [b2UP]x,o and of momentum cc [b2U2]x,o from a point 
source, both U and P are O( l / b )  at the source, and hence the corresponding mass 
flow oc [b2U]X=0 must be zero. The plume is characterized by the parameters Fo 
and V,, and it may be verified that the transformations 

(Fo, V,, m. 

(3) 
F = Yo, v = I q v ,  w = Z W ( l  + P ) A  1V,p I F 0 p w ,  

x = 2-&-4(1 + P ) - 4  /V ,p  lFopx ,  

reduce equations ( 2 )  to the non-dimensional form 

dw dv4 
v, - = wsgnFo, z= ax (4) 

where sgn Fo = & 1 according as F 0. The reduced boundary conditions are 

w = 0, v=sgnV,, a t x = O ;  

the buoyancy flux remains constant a t  all heights in a uniform environment. 
When 2 is eliminated from equations (4) 

w = ~%-*sgnv 1v5- sgnV,,lt; (6) 

and when w is eliminated from equations (4), after integration 

Equations ( 5 )  and (6) provide a parametric solution for the forced plume in a 
uniform environment from the source (Po, V,, 0 )  in terms of v. The following cases 
may be of interest: 

(i) When the fluid delivered by the source is lighter than its environment and 
has upward momentum (Fo > 0 and V, > 0 ) ,  v increases steadily from its initial 
value + 1 and 

w = 2%54(v5- l )4 ,  x = 245) (v:- I)-"fd~,. (7 4 

w = 2%5-*~vf, x = 2%5*3-'~3- 1.057; (7 b) 

s: 
This solution can be written to an accuracy better than 1 yo for v 2 2 

hence, for x 2 5, vcc (x+ 1*057)% and wcc (x+ 1.057)*, which is precisely the 
behaviour exhibited by the plume from a source (Fo, 0, 0)  of buoyancy only at 
x = -  1,057, below the given source. Figure 1 shows curves for the non-dimen- 
sional horizontal length-scale or effective plume 'radius' w/v (cc b)  and the non- 
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dimensional vertical velocity on the axis vz/w (cc U ) .  For purposes of comparison 
the corresponding curves for the ‘radii’ of plumes from virtual point sources of 
buoyancy only (marked ‘plume’) and momentum only (marked ‘jet’) are also 
shown by broken lines. 

wlv, &lw 

FIGURE 1. The behaviour of a forced plume from a virtual source of buoyancy and 
momentum, situated in a uniform environment. The non-dimensional quantities w/v, 
which is proportional to the horizontal length-scale or plume ‘radiw’, and va/w, which is 
proportional to the vertical velocity on the axis, are plotted against z which is proportional 
to the height above the virtual source; the corresponding ‘radii’ for simple plumes and jets 
are shown in broken lines. 

(ii) When the fluid from the source is heavier than its environment and has 
upward momentum (Fo < 0, V, > 0), e decreases steadily from its initial value + 1 
to 0, and 

w = 285-4( 1 - v6)6., x = 2*5* (1 - ~ f ) - *  V: &,.* (8) s.’ 
The fluid in the forced plume will rise to a maximum height 

x = 26.5) (1 -$)a V; dv, = 1.454, C 
* Note that z can also be written 2456{p(+, 4) - /3(+, 4; us)}, where p($, 4) is a B-function 

and &, 4; v6) an incomplete ,&function of argument d. 
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and will then spread sideways as it falls back; some plume fluid will remain near 
the highest point because of entrainment from above (which has been neglected). 
The present method can provide a solution only for the ascent. The solution 
curves for w/v (cc b ) ,  v2/w (cc U) and - l /w (cc P) against the dimensionless 
height x are plotted in figure 2 .  

I I I I I I -1 

I I I I I I I 

0 2 4 6 
wlo, 2&/w, llw 

FIGURE 2 .  The behaviour of a forced plume from a virtual source of momentum and 
negative buoyancy situated in a uniform environment. wlv is proportional to the plume 
‘radius’, va/w to the vertical velocity a t  the axis, and Ilw to the deficiency of temperature 
at the axis of the plume relative to that of the environment. 

(iii) When the fluid from the source is lighter than the environment but has 
downward momentum (Po > 0, V, < 0), v increases steadily from its initial value 
- 1, and 

(9 4 w = 2&-*sgn v( 1 + v5)4, x = 2654 (1 + v!)-* v! dv,. 
I 1  

The forced plume descends to a ‘singular point ’ at 

x = 2*5* 
0 

(1 + $)-* v$ dv, = - 1.454 

below the virtual source, and then rises again. The solution for a descending 
forced plume is valid phpically only until the flow spreads sideways, and is just 
case (ii) inverted. The ascending part of the solution (for v > 0)  describes a 
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forced plume from an actual source where the mass flow is too large for case (i) 
to  apply. 

Approximate expressions for v > 3 are 

w = 2%5-h,&, x = 2$51)3-1&- 3-253; (9 b)  

hence for x b 8 the forced plume behaves closely as though it were generated 
from a virtual source of buoyancy at x = - 3.253, below the given source. There 
is now an initial region of accelerated flow above the source. 

T h e  forced p l u m e  from a Source (F,, V,, W,) 
The effect on a forced plume of independent variation of the mass flux W, from 
the source can be found only by considering the effects due to a source of finite 
area. The behaviour of the plume is represented again by equations (4). For an 
extensive source it may be assumed that the flow is directed upwards from the 
source (i.e. sgn& = sgn W, = l), so that the boundary conditions at the source 

v = 1, w = 2%5-8(r(t  at x = 0, (10) 
(F,, V,, w,) are 

where I’ = 2;5a-l( 1 + A2) F0bVc5 W i  is a dimensionless parameter representative 
of the forced plume in a uniform environment. 

A plume which is the same above the level x = 0 can be generated from a 
virtual point source (Po, yV,, 0) situated at  a certain height x = -5. (Recall 
that the flux of buoyancy is constant in a uniform environment.) This equivalent 
plume must satisfy the same non-dimensional equations as the forced plume 
from the source (F,, V,, K), and the modified boundary conditions v‘ = y and 
w‘ = 0 at  x’ = 0, where the dashes are used to refer symbols to the equivalent 
plume from (F,, yV,, 0); the corresponding solution is 

V’ 2 7, W‘ = 2t5-4 ( V ’ ~ - - Y ~ ~ & ,  1 
(vi5 - y5(-* vi3 dv;. 

The two plumes will be identical above the level of the actual source if at x’ = Z, 
v’ = 1 and w’ = 285-4 IF[*; these conditions determine y and Z as 

y5 = 1 - r ,  

1l lYl  

sgn y 
= 2452 (yltsgnFo/ It5 - sgn y (-4 t3 dt, 

where v; = (71 t .  The significance of these solutions depends on the parameters of 
the physical system in a complicated way; it wil l  be investigated further in a 
separate paper on convection by forced plumes in the atmosphere. The following 
comments may be of interest here: 

( a )  when 0 < I’ < 1 ,  forced plumes behave as though from a virtual source 
(F,, 746, 0 )  situated at  

x = - 2454~8 ( t 5  - 1)-4 t3 dt. ry 
The full solution is that of case (i) for the forced plume (F,, V,, 0) given above: 
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( b )  when J? = 1, forced plumes behave as the plume (Po, 0, 0) from a source of 

(c) when I? > 1, forced plumes behave as though from a virtual source 
buoyancy only at x = - 2.108; 

(Yo, - IyI 6 , O )  situated at 

4 -  

3 -  

Y 

2 -  

I -  

Iiw, w/Iov, wz/w 

FIGURE 3. The behaviour of a forced plume from an extensive source discharging heated 
fluid and situated in a uniform environment; for this source I? = 2.69. w/v is proportional 
to the plume ‘radius’, vz/w to the vertical velocity at the axis, and l/w to the temperatwe 
excess at the axis over that in the environment. 

this integral can be positive, in which case the virtual source lies above the actual 
source (see case (iii) above). A particular example has been worked for I? = 2.69 
and the results are shown in figure 3. The curves show that when I? > 1 the plume 
fluid is at fist accelerated above the source, but that the vertical velocity 
ultimately decreases steadily with height and the plume becomes straight-sided; 

(d )  when I’ < 0 the forced plume behaves as though from a virtual source 
(47 y*G, 0) st 

(see case (iii) above). 
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The behaviour of a forced plume in a uniform environment is characterized by 
the dimensionless parameter J?, and relative to the straight sided plume from a 
virtual source of buoyancy the entrainment near the source is increased when 
I’ < 1 and decreased when I? > 1. Hence the most rapid removal of plume fluid 
from the neighbourhood of the source is obtained for small V i  and large Wg F,, by 
releasing the fluid slowly from a large aperture and giving it the maximum 
buoyancy. The most rapid mixing of the effluent with its environment is obtained 
in the jet. 

Values for the constants h and a 
For Gaussian profiles, a value h = 1.16 can be obtained in the case of thermal 
diffusion from the profiles recommended by Rouse et al. (1952). An improved 
value a = 0.082 for the entrainment constant has been found by comparison of 
the predictions of this analysis with experimental results for jets and plumes (see 
Morton 1959). 

Forced plumes in a stably stratified environment 
The foregoing treatment has shown that modifications to the shape of forced 

plumes caused by changes in the source (i.e. in F,, V, and W,) are restricted mainly 
to the lower parts of the plumes. In a weakly stratified environment the effects of 
stratification will be relatively small near the source, but will dominate the upper 
regions of plumes. Indeed, the environment can be quite strongly stratified and 
still produce a negligible effect on the lower part of the forced plume (for example, 
between the virtual point source and the actual source). This may be demonstrated 
very clearly by comparing the widths of pure plumes from point sources of 
buoyancy in uniform and stably stratified environments (see paper I); stratifica- 
tion leads to < 1 yo increase in width at one-third of the plume height, 3 yo at half 
the height and < 8 % at two-thirds of the height. Similarly, for vertical jets (see 
below), stable stratification causes < 2 yo increase in width half-way up the jet, 
and 5 %  increase at  two-thirds of the jet height. Consequently, in a stratified 
environment the shape of forced plumes in their lower parts will be similar to that 
which has been predicted for a uniform environment, and in their upper parts will 
be like that described in paper I. Thus, the calculations of the previous section 
for the position of virtual point sources in a uniform environment can be carried 
over directly to the case of a stratified environment with very great saving of 
labour and without appreciable increase of error; but further analysis is needed 
to find the dependence on Po, V, and W, of the height of the plume top, since this 
will depend critically on stratification. 

For a stratified environment the use of Gaussian proflles is unsatisfactory 
(Morton 1959) so they will be replaced for this section by ‘top hat ’ profiles, with 
the mean vertical velocity constant across a section of width 26(X)  and zero out- 
side it and the mean buoyancy constant across a symmetrically situated profile of 
width 2hb(X)  and zero outside. This change of profile does not affect the height 
calculated for the plume top, but it does modify the values of the constants; for 
the plume with ‘top hat’ profiles, a = 0.116 and h = 1.108. 

The general forced plume from the source (F,, V,, W,) is in a uniform environ- 
ment equivalent to a related plume from a virtual source of buoyancy and 
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momentum, and so it will be sufficient here to consider forced plumes (F,, V,, 0) 
from virtual sources. Only the case of stable stratification with a uniform density 
gradient will be investigated. The physical conditions of the problem provide the 
three parameters F,, V, and G = (g/po) (dp,/dX) (a measure of the stratification); 
one dimensionless parameter, GVt/F& can be formed from these, and any two 
form a basis for a reduction of the system to non-dimensional form. 

The equations for plumes with ‘top hat ’ profiles (corresponding with equa- 
tion (2) for Gaussian profiles) are 

d v4 dF ~- - S ~ V ,  - = W F W ,  a = -aw, dW 
ax ax 

where in this case V = bU, W = b2U, P = b2UP in order to preserve the physical 
meaning of V ,  W and F. The transformations 

P = IFolf, V = 2fh* IFol*G-fv, W = 2Qa*h4 IF,lfG-fw, 

x = 24a4h-a 1Fo14c?-+x, 

reduce these equations to their simplest non-dimensional form, 

dw &=v, dv4 -=fw, d f = - , ;  
ax ax (14) 

and the corresponding boundary conditions at x = 0 are, 

w = 0, v = 2-ah-* IF,I-*GfV, = vo (say), f = sgnFo. (15) 

The following cases include all plumes emitted upwards from sources of h i t e  

(i) F’ > 0 and V, > 0, corresponding with actual sources for which 0 < J? < 1. 
area. 

From the last two of equations (14) 

where r~ = G Vi/(h2Fi + G V;) is the most convenient form for the representative 
parameter. Define the new independent variable s = 2( 1 - -a) v4; then 

where the positive sign is taken where the buoyancy force acts upwards and the 
negative sign where it acts downwards. The value of v increases from v = vo at the 
source to a maximum v = (8: + 4)t  at the level where f vanishes, and then de- 
creases steadily to zero at the top of the plume (v2 cc momentum flux); the corre- 
sponding values for s are s = (+ ( < 1) at the source, s = 1 wheref = 0, and s = 0 at 
the plume top. f decreases steadily from f = 1 at the source to f = - (1 -a)+ at 
the plume-top. 

From thefirsttwoofequations(14), forthelowerpartoftheplume(a < s < l), 

w2 = 2 3  1 - -a)-% ti( 1 - t)-* at l 
= 2-f( 1 - -a)-$ { P ( f ,  4; 8) - p(2, Q; -a)}, (1’a) 
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and in the upper part of the plume (1 3 s 2 0) 

w2 = 2-a( 1 - u)-% {2p(f, 4) - p(g, 4; s) - P ( f ,  4; u)}. ( 1 7 b )  

The parametric solution is now completed by finding x from equation (14,ii); 
for the present purpose we need only the height of the plume-top, x,,,, which is 
the greatest height to which fluid emitted from the source can penetrate 

A graph of x,,, plotted against u is shown in figure 4; the curve for expression (1 8) 
is labelled 0 < I' < 1. The limiting case u = 0 for the plume from a virtual source 
of buoyancy only has a greatest height x,,, = 2.805, which agrees with the value 

I I I 

0 2  0 4  06 0.8 \ 0 

U 

FIGURE 4. The non-dimensional height (zmax) of the top of a forced plume in a stably 
stratified environment, plotted as a function of the dimensionless parameter 

The curves drawn are for the following cases: (i) 0 < I' < 1 represents the plume from a 
virtual source of positive buoyancy and upward momentum, (ii) I? i 0 is that for a source 
of negative buoyancy and upward momentum, and (iii) r > 1 is that for a source of 
positive buoyancy and downward momentum. 

u = av:/(Aw:+GV",. 

2.80 + , given in paper I; the complete solution for the case u = 0 can be found in 
that paper. As n is increased the value x,,, decreases, at  first rapidly owing to the 
sudden increase in mixing near the source and then more slowly. When u exceeds 
0-8 the buoyancy flux from the source is becoming less important than that of 
momentum, and forced plumes can be projected to any height by sufficiently 
increasing the momentum of the fluid as it leaves the sources; the necessary in- 
crease may be very large, for example, #V$;tzF; must be increased to about 
100 before the height of the forced plume is again as great as that of the simple 

11 Fluid Mech. 6 
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plume from a virtual point source of buoyancy. (Actual heights are directly 
proportional to dimensionless heights if V, only is varied.) 

(ii) F, < 0 and V, > 0, corresponding with actual sources for which I? < 0. The 
appropriate boundary conditions at  x = 0 are 

f = - 1 ,  w = 0, 

and the greatest height to which the heavy plume fluid rises is 

2) = ?Jo = tL-W(l-cr)-~; 

The variation in height of the plume-top with cr is shown in figure 4 by the curve 
labelled I? < 0. A relatively small flux of momentum is needed to lift the plume 
top well clear of the source, but thereafter the height increases slowly with in- 
creasing V,. The parts of the curves near cr = 1 in figure 4 are very similar because 
here the forced plume is dominated by the momentum flux from the source. 

wlv, v2lw, -flw 

FIGURE 5. The behaviow of the jet from a virtual source of momentum, situated in a 
stably stratified environment. The non-dimensional quantities plotted are w/v, which is 
proportional to the horizontal length scale or ‘radius’ of the jet, va/w, proportional to  the 
vertical velocity on the axis, and - flw, proportional to the reduction of temperature a t  
the &xis below that of the ambient fiuid at that level; x is the non-dimensional height above 
the virtual source. 
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(iii) Fo > 0 and V, < 0, corresponding with actual sources for which r > 1. The 
initial downwards flow corresponds with case (ii) inverted; the height of the 
plume-top above the source in the subsequent ascent is 

The position of the plume top relative to the virtual source is shown by the curve 
labelled I? > 1 in figure 4, and the lowest level to which the plume fluid penetrates 
can be found from the curve I? < 0 in the same figure. 

The vertical jet from a source (0, V,, 0) in a stratijied environment (G) 

In  this case the scale of the motion is determined by V, and G; the trans- 
formations 

F = 2-*h-'V:G*f) V = V,U, W = 2fc~)h- iViG- f~ ,  

X = 2-8a-4h-4 V i  G-fx, 

reduce the equations for the jet to the same form as equations (la), and the 
boundary conditions a t  x = 0 to u = 1, w = 0 and f = 0. The solution is 

2, = sf, w = 2f{P(% 8)  -P(% 9; 4}*, I 

the height of the plume top is x,, = 1-70. Figure 5 shows these results; v2/w cc 
vertical velocity within the plume, w/u cc radius of the plume, and f/w cc buoyancy 
of the plume fluid. These curves may be compared with those for a simple plume 
shown in figure 1 of paper I; the most obvious and important difference is the 
more rapid spreading of the jet. 
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